Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 76
Filter
1.
Rev Med Virol ; : e2465, 2023 Jun 09.
Article in English | MEDLINE | ID: covidwho-20243439

ABSTRACT

Monoamine oxidase (MAO) is a membrane-bound mitochondrial enzyme that maintains the steady state of neurotransmitters and other biogenic amines in biological systems through catalytic oxidation and deamination. MAO dysfunction is closely related to human neurological and psychiatric diseases and cancers. However, little is known about the relationship between MAO and viral infections in humans. This review summarises current research on how viral infections participate in the occurrence and development of human diseases through MAO. The viruses discussed in this review include hepatitis C virus, dengue virus, severe acute respiratory syndrome coronavirus 2, human immunodeficiency virus, Japanese encephalitis virus, Epstein-Barr virus, and human papillomavirus. This review also describes the effects of MAO inhibitors such as phenelzine, clorgyline, selegiline, M-30, and isatin on viral infectious diseases. This information will not only help us to better understand the role of MAO in the pathogenesis of viruses but will also provide new insights into the treatment and diagnosis of these viral diseases.

2.
Transp Res Part A Policy Pract ; 173: 103703, 2023 Jul.
Article in English | MEDLINE | ID: covidwho-2327878

ABSTRACT

The COVID-19 pandemic has resulted in a seismic shift in the way in which work is conducted. Remote working or working from home is becoming a centrepiece of the next normal with strong support from both employers and employees. With reduced commuting activity associated with an expected 1 to 2 days working from home for many occupations and industries, associated with releasing commuting time to spend on other activities including changed levels and patterns on non-commuting travel, it is necessary, indeed essential, to allow for the incidence of working from home in integrated strategic transport and location model systems. In this paper we show the extent of changes in travel behaviour and the performance of the transport network before and after allowing for working from home, which is more impactful than any new infrastructure project. The differences are significant and suggest that even within the existing modelling frameworks used pre-COVID-19, we need to make adjustments in the modal activity overall and by location. Using the MetroScan platform in the Greater Sydney Metropolitan area, we present a number of outputs to illustrate the significant impacts of working from home such as modal activity (total and shares), emissions, government revenues, and generalised cost of travel.

3.
Diagnostic Microbiology and Infectious Disease ; : 115969, 2023.
Article in English | ScienceDirect | ID: covidwho-2311801

ABSTRACT

Patients undergoing hemodialysis (HD) are particularly vulnerable to coronavirus disease 2019 (COVID-19) and are at increased risk of developing severe infection. However, given the exclusion of such patients from clinical trials, there are limited data regarding the effectiveness of the antiviral drug nirmatrelvir/ritonavir (N/R) in patients on HD. We prescribed N/R to four patients on HD with COVID-19 after obtaining informed consent. Their clinical symptoms were improved at approximately 3 days after N/R administration. The viral load was reduced after approximately 10 days. The main adverse effects were nausea and vomiting. Rational dosage adjustment obtained good tolerance but did not influence the efficacy. These results suggest that N/R may be a promising agent for patients on HD with COVID-19.

4.
Microbiol Spectr ; 11(3): e0464022, 2023 Jun 15.
Article in English | MEDLINE | ID: covidwho-2298025

ABSTRACT

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has been a major public health threat globally, especially during the beginning of the pandemic in 2020. Reverse transcription-quantitative PCR (RT-qPCR) is utilized for viral RNA detection as part of control measures to limit the spread of COVID-19. Collecting nasopharyngeal swabs for RT-qPCR is a routine diagnostic method for COVID-19 in clinical settings, but its large-scale implementation is hindered by a shortage of trained health professionals. Despite concerns over its sensitivity, saliva has been suggested as a practical alternative sampling approach to the nasopharyngeal swab for viral RNA detection. In this study, we spiked saliva from healthy donors with inactivated SARS-CoV-2 from an international standard to evaluate the effect of saliva on viral RNA detection. On average, the saliva increased the cycle threshold (CT) values of the SARS-CoV-2 RNA samples by 2.64 compared to the viral RNA in viral transport medium. Despite substantial variation among different donors in the effect of saliva on RNA quantification, the outcome of the RT-qPCR diagnosis was largely unaffected for viral RNA samples with CT values of <35 (1.55 log10 IU/mL). The saliva-treated viral RNA remained stable for up to 6 h at room temperature and 24 h at 4°C. Further supplementing protease and RNase inhibitors improved the detection of viral RNA in the saliva samples. Our data provide practical information on the storage conditions of saliva samples and suggest optimized sampling procedures for SARS-CoV-2 diagnosis. IMPORTANCE The primary method for detection of SARS-CoV-2 is using nasopharyngeal swabs, but a shortage of trained health professionals has hindered its large-scale implementation. Saliva-based nucleic acid detection is a widely adopted alternative, due to its convenience and minimally invasive nature, but the detection limit and direct impact of saliva on viral RNA remain poorly understood. To address this gap in knowledge, we used a WHO international standard to evaluate the effect of saliva on SARS-CoV-2 RNA detection. We describe the detection profile of saliva-treated SARS-CoV-2 samples under different storage temperatures and incubation periods. We also found that adding protease and RNase inhibitors could improve viral RNA detection in saliva. Our research provides practical recommendations for the optimal storage conditions and sampling procedures for saliva-based testing, which can improve the efficiency of COVID-19 testing and enhance public health responses to the pandemic.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/diagnosis , COVID-19 Testing , Saliva , Clinical Laboratory Techniques/methods , RNA, Viral/genetics , RNA, Viral/analysis , Endoribonucleases
5.
Zool Res ; 44(3): 505-521, 2023 May 18.
Article in English | MEDLINE | ID: covidwho-2306427

ABSTRACT

Bacterial or viral infections, such as Brucella, mumps virus, herpes simplex virus, and Zika virus, destroy immune homeostasis of the testes, leading to spermatogenesis disorder and infertility. Of note, recent research shows that SARS-CoV-2 can infect male gonads and destroy Sertoli and Leydig cells, leading to male reproductive dysfunction. Due to the many side effects associated with antibiotic therapy, finding alternative treatments for inflammatory injury remains critical. Here, we found that Dmrt1 plays an important role in regulating testicular immune homeostasis. Knockdown of Dmrt1 in male mice inhibited spermatogenesis with a broad inflammatory response in seminiferous tubules and led to the loss of spermatogenic epithelial cells. Chromatin immunoprecipitation sequencing (ChIP-seq) and RNA sequencing (RNA-seq) revealed that Dmrt1 positively regulated the expression of Spry1, an inhibitory protein of the receptor tyrosine kinase (RTK) signaling pathway. Furthermore, immunoprecipitation-mass spectrometry (IP-MS) and co-immunoprecipitation (Co-IP) analysis indicated that SPRY1 binds to nuclear factor kappa B1 (NF-κB1) to prevent nuclear translocation of p65, inhibit activation of NF-κB signaling, prevent excessive inflammatory reaction in the testis, and protect the integrity of the blood-testis barrier. In view of this newly identified Dmrt1- Spry1-NF-κB axis mechanism in the regulation of testicular immune homeostasis, our study opens new avenues for the prevention and treatment of male reproductive diseases in humans and livestock.


Subject(s)
COVID-19 , Rodent Diseases , Zika Virus Infection , Zika Virus , Humans , Male , Mice , Animals , Testis , NF-kappa B/metabolism , COVID-19/veterinary , SARS-CoV-2/metabolism , Homeostasis , Fertility , Zika Virus/metabolism , Zika Virus Infection/metabolism , Zika Virus Infection/veterinary , Membrane Proteins/metabolism , Phosphoproteins/metabolism , Phosphoproteins/pharmacology , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/pharmacology , Rodent Diseases/metabolism
7.
J Inflamm Res ; 16: 1017-1025, 2023.
Article in English | MEDLINE | ID: covidwho-2288458

ABSTRACT

Background: Primary membranous nephropathy (PMN) is a common cause of nephrotic syndrome in adults. Forty percent of the patients continue to progress and eventually develop into chronic renal failure. Although phospholipase A2 receptor (PLA2R) is the major antigen of PMN, the clinical features do not often parallel with the antibody titers. Therefore, it is significant to find relative credible markers to predict the treatment response. Methods: One hundred and eighteen PMN patients were recruited. The response to treatment was defined as ALB≥30g/L at 6 months and complete remission (CR) or not at the end of the follow-up. Renal outcome endpoint was defined as 50% or more Cr increase at the end. Results: The patients with poor treatment effects had numerically higher platelet-lymphocytes ratio (PLR). For patients with CR or not, the difference was near to statistic significant (P=0.095). When analyzing CR or not, the fitting of the binary logistic regression model including both PLA2R Ab titer and PLR (Hosmer-Lemeshow test: χ 2=8.328, P = 0.402; OR (PLA2R Ab titer) = 1.002 (95% CI 1.000-1.004, P = 0.042); OR (PLR) = 1.006 (95% CI 0.999-1.013, P = 0.098)) was markedly better than that with only PLA2R Ab titer (Hosmer-Lemeshow test: χ 2=13.885, P = 0.016). The patients with renal function deterioration showed significantly higher monocyte-lymphocyte ratio (MLR) (0.26 (0.22-0.31) vs 0.18 (0.13-0.22), P = 0.012). Conclusion: PMN patients with poor treatment response tended to have higher PLR at the time of renal biopsy, and a higher MLR was associated with poor renal outcomes. Our findings suggested that PLR and MLR might be used to predict treatment efficacy and prognosis for PMN patients, respectively.

8.
Cell Mol Immunol ; 20(4): 351-364, 2023 04.
Article in English | MEDLINE | ID: covidwho-2287148

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-induced cytokine storm is closely associated with coronavirus disease 2019 (COVID-19) severity and lethality. However, drugs that are effective against inflammation to treat lethal COVID-19 are still urgently needed. Here, we constructed a SARS-CoV-2 spike protein-specific CAR, and human T cells infected with this CAR (SARS-CoV-2-S CAR-T) and stimulated with spike protein mimicked the T-cell responses seen in COVID-19 patients, causing cytokine storm and displaying a distinct memory, exhausted, and regulatory T-cell phenotype. THP1 remarkably augmented cytokine release in SARS-CoV-2-S CAR-T cells when they were in coculture. Based on this "two-cell" (CAR-T and THP1 cells) model, we screened an FDA-approved drug library and found that felodipine, fasudil, imatinib, and caspofungin were effective in suppressing the release of cytokines, which was likely due to their ability to suppress the NF-κB pathway in vitro. Felodipine, fasudil, imatinib, and caspofungin were further demonstrated, although to different extents, to attenuate lethal inflammation, ameliorate severe pneumonia, and prevent mortality in a SARS-CoV-2-infected Syrian hamster model, which were also linked to their suppressive role in inflammation. In summary, we established a SARS-CoV-2-specific CAR-T-cell model that can be utilized as a tool for anti-inflammatory drug screening in a fast and high-throughput manner. The drugs identified herein have great potential for early treatment to prevent COVID-19 patients from cytokine storm-induced lethality in the clinic because they are safe, inexpensive, and easily accessible for immediate use in most countries.


Subject(s)
COVID-19 , Receptors, Chimeric Antigen , Humans , SARS-CoV-2/metabolism , Imatinib Mesylate/pharmacology , Imatinib Mesylate/therapeutic use , Caspofungin , Felodipine , Cytokine Release Syndrome/drug therapy , Inflammation , Cytokines/metabolism
9.
Cell Commun Signal ; 21(1): 42, 2023 02 24.
Article in English | MEDLINE | ID: covidwho-2263375

ABSTRACT

Aryl hydrocarbon receptor (AHR) is a ligand-dependent transcriptional factor widely expressed among immune, epithelial, endothelial and stromal cells in barrier tissues. It can be activated by small molecules provided by pollutants, microorganisms, food, and metabolism. It has been demonstrated that AHR plays an important role in modulating the response to many microbial pathogens, and the abnormal expression of AHR signaling pathways may disrupt endocrine, cause immunotoxicity, and even lead to the occurrence of cancer. Most humans are infected with at least one known human cancer virus. While the initial infection with these viruses does not cause major disease, the metabolic activity of infected cells changes, thus affecting the activation of oncogenic signaling pathways. In the past few years, lots of studies have shown that viral infections can affect disease progression by regulating the transmission of multiple signaling pathways. This review aims to discuss the potential effects of virus infections on AHR signaling pathways so that we may find a new strategy to minimize the adverse effects of the AHR pathway on diseases. Video Abstract.


Subject(s)
Receptors, Aryl Hydrocarbon , Virus Diseases , Humans , Receptors, Aryl Hydrocarbon/genetics , Receptors, Aryl Hydrocarbon/metabolism , Signal Transduction , Gene Expression Regulation
10.
J Matern Fetal Neonatal Med ; 36(1): 2193284, 2023 Dec.
Article in English | MEDLINE | ID: covidwho-2253494

ABSTRACT

OBJECTIVE: This study aimed to evaluate the effects of the home quarantine on pregnancy outcomes of gestational diabetes mellitus (GDM) patients during the COVID-19 outbreak. METHODS: The complete electronic medical records of patients with GDM with home quarantine history were collected and classified into the home quarantine group from 24 February 2020 to 24 November 2020. The same period of patients with GDM without home quarantine history were included in the control group from 2018 to 2019. The pregnant outcomes of the home quarantine and control groups were systematically compared, such as neonatal weight, head circumference, body length, one-minute Apgar score, fetal macrosomia, and pre-term delivery. RESULTS: A total of 1358 patients with GDM were included in the analysis, including 484 in 2018, 468 in 2019, and 406 in 2020. Patients with GDM with home quarantine in 2020 had higher glycemic levels and adverse pregnancy outcomes than in 2018 and 2019, including higher cesarean section rates, lower Apgar scores, and higher incidence of macrosomia and umbilical cord around the neck. More importantly, the second trimester of home quarantine had brought a broader impact on pregnant women and fetuses. CONCLUSION: Home quarantine has aggravated the condition of GDM pregnant women and brought more adverse pregnancy outcomes during the COVID-19 outbreak. Therefore, we suggested governments and hospitals strengthen lifestyle guidance, glucose management, and antenatal care for patients with GDM with home quarantine during public health emergencies.


Subject(s)
COVID-19 , Diabetes, Gestational , Infant, Newborn , Pregnancy , Humans , Female , Diabetes, Gestational/epidemiology , Pregnancy Outcome/epidemiology , Cesarean Section , Retrospective Studies , Quarantine , COVID-19/epidemiology , COVID-19/prevention & control , Fetal Macrosomia/epidemiology
11.
Emerg Microbes Infect ; : 1-45, 2022 Nov 17.
Article in English | MEDLINE | ID: covidwho-2242558

ABSTRACT

Numerous vaccines have been developed to address the current COVID-19 pandemic, but safety, cross-neutralizing efficacy, and long-term protectivity of currently approved vaccines are still important issues. In this study, we developed a subunit vaccine, ASD254, by using a nanoparticle vaccine platform to encapsulate the SARS-CoV-2 spike receptor-binding domain (RBD) protein. As compared with the aluminum-adjuvant RBD vaccine, ASD254 induced higher titers of RBD-specific antibodies and generated 10- to 30-fold more neutralizing antibodies. Mice vaccinated with ASD254 showed protective immune responses against SARS-CoV-2 challenge, with undetectable infectious viral loads and reduced typical lesions in lung. Besides, neutralizing antibodies in vaccinated mice lasted for at least one year and were effective against various SARS-CoV-2 variants of concern, including B.1.1.7 (Alpha), B.1.351 (Beta), P.1 (Gamma), B.1.617.2 (Delta), and B.1.1.529 (Omicron). Furthermore, particle size, polydispersity index, and zeta potential of ASD254 remained stable after 8-month storage at 4°C. Thus, ASD254 is a promising nanoparticle vaccine with good immunogenicity and stability to be developed as an effective vaccine option in controlling upcoming waves of COVID-19.

12.
Microb Pathog ; 176: 106009, 2023 Mar.
Article in English | MEDLINE | ID: covidwho-2221158

ABSTRACT

Bovine coronavirus (BCoV) is one of the important pathogens that cause calf diarrhea (CD), winter dysentery (WD), and the bovine respiratory disease complex (BRDC), and spreads worldwide. An infection of BCoV in cattle can lead to death of young animals, stunted growth, reduced milk production, and milk quality, thus bringing serious economic losses to the bovine industry. Therefore, it is necessary to prevent and control the spread of BCoV. Here, a systematic review and meta-analysis was conducted to assess the prevalence of BCoV in cattle in China before 2022. A total of 57 articles regarding the prevalence of BCoV in cattle in China were collected from five databases (PubMed, ScienceDirect, CNKI, VIP, and Wan Fang). Based on the inclusion criteria, a total of 15,838 samples were included, and 6,136 were positive cases. The overall prevalence of BCoV was 30.8%, with the highest prevalence rate (60.5%) identified in South China and the lowest prevalence (15.6%) identified in Central China. We also analyzed other subgroup information, included sampling years, sample sources, detection methods, breeding methods, age, type of cattle, presence of diarrhea, and geographic and climatic factors. The results indicated that BCoV was widely prevalent in China. Among all subgroups, the sample sources, detection methods, breeding methods, and presence or absence of diarrheal might be potential risk factors responsible for BCoV prevalence. It is recommended to strengthen the detection of BCoV in cattle, in order to effectively control the spread of BCoV.


Subject(s)
Cattle Diseases , Coronavirus, Bovine , Dysentery , Cattle , Animals , Prevalence , Cattle Diseases/epidemiology , Diarrhea/veterinary , China/epidemiology , Feces
13.
Front Public Health ; 10: 1047362, 2022.
Article in English | MEDLINE | ID: covidwho-2224934

ABSTRACT

Objective: The outbreak of COVID-19 in 2020 is reminiscent of the H7N9 outbreak in 2013, which poses a huge threat to human health. We aim to compare clinical features and survival factors in fatal cases of COVID-19 and H7N9. Methods: Data on confirmed COVID-19 and H7N9 fatal cases identified in mainland China were analyzed to compare demographic characteristics and clinical severity. Survival curves were estimated by the Kaplan-Meier method and compared using log-rank tests and a restricted mean survival time model. A Cox regression model was used to identify survival factors in fatal cases of COVID-19 and H7N9. Results: Similar demographic characteristics were observed in fatal cases of COVID-19 and H7N9. The proportion of fatal cases of H7N9 receiving antibiotics, antiviral drugs, and oxygen treatment was higher than that of COVID-19. The potential protective factors for fatal COVID-19 cases were receiving antibiotics (HR: 0.37, 95% CI: 0.22-0.61), oxygen treatment (HR: 0.66, 95% CI: 0.44-0.99), and corticosteroids (HR: 0.46, 95% CI: 0.35-0.62). In contrast, antiviral drugs (HR: 0.21, 95% CI: 0.08-0.56) and corticosteroids (HR: 0.45, 95% CI: 0.29-0.69) were the protective factors for H7N9 fatal cases. Conclusion: The proportion of males, those having one or more underlying medical condition, and older age was high in COVID-19 and H7N9 fatal cases. Offering antibiotics, oxygen treatment, and corticosteroids to COVID-19 cases extended the survival time. Continued global surveillance remains an essential component of pandemic preparedness.


Subject(s)
COVID-19 , Influenza A Virus, H7N9 Subtype , Humans , Male , COVID-19/epidemiology , Pandemics , Antiviral Agents/therapeutic use , Oxygen
14.
Sustainability ; 15(3):2462, 2023.
Article in English | MDPI | ID: covidwho-2216863

ABSTRACT

The development of globalization has brought about obvious differences in the resilience of different regions against economic crises. Regional economic resilience refers to the ability of a region's economy to resist shocks when faced with external disturbances or to break away from its existing growth model in favor of a better path, Resilience represents the region's adaptability, innovation, and sustainability. This paper describes an empirical analysis on the 60 designated industrial park developments under the Industrial Development Bureau in Taiwan. Over a period of short-term disturbances, the industrial parks are analyzed from four aspects: industrial structure, regional development foundation, enterprise competitiveness and labor conditions, and government governance and policy systems. Through discriminant analysis, we analyze the characteristics of factors that mainly affect the economic resilience of 60 industrial parks faced with shocks such as the subprime mortgage crisis in 2008, the five-day work week in 2016, and the COVID-19 outbreak in 2019. We found that industrial structure, specifically diversified industrial structure, is the major factor behind enhanced regional economic resilience. If the scale of specialized industries is large enough, they can form sufficient capacity to resist external changes and also be economically resilient. Under the negative impact, the amount of innovation can be an important part of post-disaster recovery, and stable innovation input will become a main factor for the sustainable development of industrial parks. The pressure of the uncertainty of global economic development and the transformation and upgrading of the domestic economy underscore that enterprises urgently need automation and digital transformation to enhance their competitiveness. In order to enhance economic resilience to adapt to changes in the overall environment, the industrial parks need to adjust adaptively, improve their industrial structure, and promote innovation, hoping that the regional economy will move towards a more stable and sustainable development path.

15.
J Virus Erad ; 8(4): 100308, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2181183

ABSTRACT

Background: A community COVID-19 outbreak caused by the B.1.1.7 SARS-CoV-2 variant occurred in Taiwan in May 2021. High-risk populations such as people living with HIV (PLWH) were recommended to receive two doses of COVID-19 vaccines. While SARS-CoV-2 vaccines have demonstrated promising results in general population, real-world information on the serological responses remains limited among PLWH. Methods: PLWH receiving the first dose of SARS-CoV-2 vaccine from 2020 to 2021 were enrolled. Determinations of anti-SARS-CoV-2 spike IgG titers were performed every one to three months, the third dose of the SARS-CoV-2 vaccine or confirmed SARS-CoV-2 infection. All serum samples were tested for anti-nucleocapsid antibody and those tested positive were excluded from analysis. Results: A total of 1189 PLWH were enrolled: 829 (69.7%) receiving two doses of the AZD1222 vaccine, 232 (19.5%) of the mRNA-1273 vaccine, and 128 (10.8%) of the BNT162b2 vaccine. At all time-points, PLWH receiving two doses of mRNA vaccines had consistently higher antibody levels than those receiving the AZD1222 vaccine (p <0.001 for all time-point comparisons). Factors associated with failure to achieve an anti-spike IgG titer >141 BAU/mL within 12 weeks, included type 2 diabetes mellitus (DM) (adjusted odds ratio [aOR], 2.24; 95% CI, 1.25-4), a CD4 T cell count <200 cells/mm3 upon receipt of the first dose of vaccination (aOR, 3.43; 95% CI, 1.31-9) and two homologous AZD1222 vaccinations (aOR, 16.85; 95%CI, 10.13-28). For those receiving two doses of mRNA vaccines, factors associated with failure to achieve an anti-spike IgG titer >899 BAU/mL within 12 weeks were a CD4 T cell count <200 cells/mm3 on first-dose vaccination (aOR, 3.95; 95% CI, 1.08-14.42) and dual BNT162b2 vaccination (aOR, 4.21; 95% CI, 2.57-6.89). Conclusions: Two doses of homologous mRNA vaccination achieved significantly higher serological responses than vaccination with AZD1222 among PLWH. Those with CD4 T cell counts <200 cells/mm3 and DM had consistently lower serological responses.

16.
Frontiers in public health ; 10, 2022.
Article in English | EuropePMC | ID: covidwho-2156796

ABSTRACT

Objective The outbreak of COVID-19 in 2020 is reminiscent of the H7N9 outbreak in 2013, which poses a huge threat to human health. We aim to compare clinical features and survival factors in fatal cases of COVID-19 and H7N9. Methods Data on confirmed COVID-19 and H7N9 fatal cases identified in mainland China were analyzed to compare demographic characteristics and clinical severity. Survival curves were estimated by the Kaplan–Meier method and compared using log-rank tests and a restricted mean survival time model. A Cox regression model was used to identify survival factors in fatal cases of COVID-19 and H7N9. Results Similar demographic characteristics were observed in fatal cases of COVID-19 and H7N9. The proportion of fatal cases of H7N9 receiving antibiotics, antiviral drugs, and oxygen treatment was higher than that of COVID-19. The potential protective factors for fatal COVID-19 cases were receiving antibiotics (HR: 0.37, 95% CI: 0.22–0.61), oxygen treatment (HR: 0.66, 95% CI: 0.44–0.99), and corticosteroids (HR: 0.46, 95% CI: 0.35–0.62). In contrast, antiviral drugs (HR: 0.21, 95% CI: 0.08–0.56) and corticosteroids (HR: 0.45, 95% CI: 0.29–0.69) were the protective factors for H7N9 fatal cases. Conclusion The proportion of males, those having one or more underlying medical condition, and older age was high in COVID-19 and H7N9 fatal cases. Offering antibiotics, oxygen treatment, and corticosteroids to COVID-19 cases extended the survival time. Continued global surveillance remains an essential component of pandemic preparedness.

17.
Vaccines (Basel) ; 10(11)2022 Nov 09.
Article in English | MEDLINE | ID: covidwho-2110293

ABSTRACT

BACKGROUND: Metabolites are involved in biological process that govern the immune response to infection and vaccination. Knowledge of how metabolites interact with the immune system during immunization with the COVID-19 vaccine is limited. Here, we report that the serum metabolites are correlated with the magnitude of the antibody response in recipients receiving the inactivated COVID-19 vaccine, which provides critical information for studying metabolism regarding the human immune response to vaccination. METHODS: 106 healthy volunteers without history of SARS-CoV-2 infection or vaccination were prospectively enrolled to receive the primary series of two doses of inactivated whole-virion SARS-CoV-2 vaccine. The serum samples were collected 2-4 weeks after the second dose. The magnitude of the anti-RBD antibody was quantified using surrogate virus neutralization tests. The profile of metabolites in serum was identified using untargeted metabolomics analysis. RESULTS: The level of anti-RBD antibody 14-28 days after the second dose was significantly elevated and its interpersonal variability was diverse in a wide range. Thirty-two samples at extremes of the anti-RBD antibody titer were selected to discover the metabolic correlates. Two hundred and fifteen differential metabolites associated with antibody response independent of body mass index were identified. Pregnenolone and sphingolipid metabolism might be involved in the modulation of the human antibody response to the inactivated COVID-19 vaccine. CONCLUSION: We discovered key metabolites as well as those with a related functional significance that might modulate the human immune response to vaccination.

18.
Yi Chuan ; 44(8): 672-681, 2022 Aug 20.
Article in English | MEDLINE | ID: covidwho-2081137

ABSTRACT

The coronavirus disease 2019 (COVID-19) is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. COVID-19 has a variety of clinical manifestations, ranging from asymptomatic infection or mild symptoms to severe symptoms. Severe COVID-19 patients experience cytokine storm, resulting in multi-organ failure and even death. Male gender, old age, and pre-existing comorbidities (such as hypertension and diabetes ) are risk factors for COVID-19 severity. Recently, a series of studies suggested that genetic defects might also be related to disease severity and the cytokine storm occurence. Genetic variants in key viral immune genes, such as TLR7 and UNC13D, have been identified in severe COVID-19 patients from previous reports. In this review, we summarize the mechanisms underlying immune responses against SARS-CoV-2 and genetic variants that associated with the severity of COVID-19. The study of genetic basis of COVID-19 will be of great benefit for early disease detection and intervention.


Subject(s)
COVID-19 , Humans , Male , COVID-19/genetics , Genetic Predisposition to Disease , Cytokine Release Syndrome/genetics , SARS-CoV-2/genetics , Membrane Proteins
19.
Molecules ; 27(20)2022 Oct 17.
Article in English | MEDLINE | ID: covidwho-2071653

ABSTRACT

The tracing of an alternative drug, Phytochemicals is a promising approach to the viral threats that have emerged over the past two years. Across the world, herbal medicine is a better solution against anti-viral diseases during pandemic periods. Goniothalamus wightii is an herbal plant, which has diverse bioactive compounds with anticancer, antioxidant, and anti-viral properties. The aim of the study was to isolate the compound by chromatography studies and functionalization by FT-IR, LC-MS, and NMR (C-NMR, H-NMR). As a result, the current work focuses on whether (S)-Goniathalamin and its analogue could act as natural anti-viral molecules for multiple target proteins viz., MPro, RdRp, and SPro, which are required for SARS-CoV-2 infection. Overall, 954 compounds were examined and the molecular-docking studies were performed on the maestro platform of Schrodinger software. Molecular-dynamics simulation studies were performed on two complex major compounds to confirm their affinity across 150 simulations. This research suggests that plant-based drugs have high levels of antiviral properties against coronavirus. However, more research is needed to verify its antiviral properties.


Subject(s)
COVID-19 Drug Treatment , Goniothalamus , Humans , SARS-CoV-2 , Coronavirus 3C Proteases , Antioxidants , Spectroscopy, Fourier Transform Infrared , Cysteine Endopeptidases/chemistry , Antiviral Agents/chemistry , Molecular Docking Simulation , Molecular Dynamics Simulation , RNA-Dependent RNA Polymerase
20.
Experimental and Therapeutic Medicine ; 24(3), 2022.
Article in English | EuropePMC | ID: covidwho-1990179

ABSTRACT

In December 2019, there was an outbreak of pneumonia of unknown causes in Wuhan, China. The etiological pathogen was identified to be a novel coronavirus, named severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), which causes coronavirus disease 2019 (COVID-19). The number of infected patients has markedly increased since the 2019 outbreak and COVID-19 has also proven to be highly contagious. In particular, the elderly are among the group of patients who are the most susceptible to succumbing to COVID-19 within the general population. Cross-infection in the hospital is one important route of SARS-CoV-2 transmission, where elderly patients are more susceptible to nosocomial infections due to reduced immunity. Therefore, the present study was conducted to search for ways to improve the medical management workflow in geriatric departments to ultimately reduce the risk of nosocomial infection in elderly inpatients. The present observational retrospective cohort study analysed elderly patients who were hospitalised in the Geriatric Department of the First Affiliated Hospital with Nanjing Medical University (Nanjing, China). A total of 4,066 elderly patients, who were admitted between January and March in 2019 and 2020 and then hospitalised for >48 h were selected. Among them, 3,073 (75.58%) patients hospitalised from January 2019 to March 2019 were allocated into the non-intervention group, whereas the remaining 933 (24.42%) patients hospitalised from January 2020 to March 2020 after the COVID-19 outbreak were allocated into the intervention group. Following multivariate logistic regression analysis, the risk of nosocomial infections was found to be lower in the intervention group compared with that in the non-intervention group. After age stratification and adjustment for sex, chronic disease, presence of malignant tumour and trauma, both inverse probability treatment weighting and standardised mortality ratio revealed a lower risk of nosocomial infections in the intervention group compared with that in the non-intervention group. To rule out interference caused by changes in the community floating population and social environment during this 1-year study, 93 long-stay patients in stable condition were selected as a subgroup based on 4,066 patients. The so-called floating population refers to patients who have been in hospital for <2 years. Patients aged ≥65 years were included in the geriatrics program. The incidence of nosocomial infections during the epidemic prevention and control period (24 January 2020 to 24 March 2020) and the previous period of hospitalisation (24 January 2019 to 24 March 2019) was also analysed. In the subgroup analysis, a multivariate analysis was also performed on 93 elderly patients who experienced long-term hospitalisation. The risk of nosocomial and pulmonary infections was found to be lower in the intervention group compared with that in the non-intervention group. During the pandemic, the geriatric department took active preventative measures. However, whether these measures can be normalised to reduce the risk of nosocomial infections among elderly inpatients remain unclear. In addition, the present study found that the use of an indwelling gastric tube is an independent risk factor of nosocomial pulmonary infection in elderly inpatients. However, nutritional interventions are indispensable for the long-term wellbeing of patients, especially for those with dysphagia in whom an indwelling gastric tube is the most viable method of providing enteral nutrition. To conclude, the present retrospective analysis of the selected cases showed that enacting preventative and control measures resulted in the effective control of the incidence of nosocomial infections.

SELECTION OF CITATIONS
SEARCH DETAIL